
 1

I. ABSTRACT

Abstract—In this paper, I will be covering and

diving into the travelling salesman problem both in

understanding the purposes and use cases of the

travelling salesman problem as it comes to real world

uses as well as understanding the problem more

completely. The travelling salesman problem is a

classic problem that exists within the field of

computer science. It has a large degree of relevance

within the field of P vs NP problems (problems

solvable in polynomial time versus nondeterministic

polynomial time). Understanding the travelling

salesman problem is important to understanding the

field of P vs NP as well as variations of the NP

problems. As the travelling salesman problem is

considered unsolvable, a variety of algorithms will be

implemented including a brute force algorithm that

will attempt to check every possible solution, a

commonly used approach in the nearest neighbor

algorithm, and finally a new implementation

approach that represents a heuristic approach to the

problem with the goal of finding faster and more

accurate solutions to the problem. The overall goal of

this self-described heuristic algorithm is to compete

within the class period in an attempt to discover the

various positives and negatives of different

approaches and techniques at solving the problem

and finding solutions.

II. INTRODUCTION

First the introduction of the problem. This travelling

salesman problem has become a very important

question to researchers as it can be applied to many

different sciences and areas of study. It originally was

introduced by mathematicians in the 1800s. As can be

seen this is a very old problem that has seen many

iterations of attempts to solve and discover various

techniques used within the way of solving the

problem. In the classic explanation of the problem a

salesman is given a list of various cities across the

country that he must visit, the goal of this salesman is

to visit each of these cities only one time and to return

to his original starting city all while making sure to

take the shortest route between them as to save as

much time and money as possible.

This problem is an extremely difficult problem to

reach a true solution to because as each destination

can be visited from any other point within the graph

the number of potential routes is extremely high and

grows extremely quickly as the number of cities or

destinations grows. The large growth of this problem

makes it extremely difficult to solve and confirm that

the absolutely correct solution has been reached.

Because we usually cannot compute every single

possible path it is difficult to know if we have selected

the ’correct’ path, even if we found a very efficient

path a potentially more efficient one exists.

This makes this problem be described as one that is

NP-Hard. This means that this problem is difficult to

find a complete solution to. The NP stands for

nondeterministic polynomial time, meaning that it

cannot be determined how long a solution would take

to create. The hard means that it is equally as difficult

as all other problems within the NP-Hard space, as

such if an algorithm is found to solve the travelling

salesman problem, then there would exist and

algorithm to solve all other problems within the NP-

Hard space of problems. In the figure below we can

see what a solution to the travelling salesman problem

may look like. A scattering of nodes with edges drawn

between them representing the path that was taken

between each individual node.

A Heuristic Approach and Analysis of The

Travelling Salesman Problem

Tyler Conger, CS 570, tconger1@crimson.ua.edu

 2

Figure 1. A common graph showcasing the travelling

salesman problem.

As can be seen in the figure above. Each of the

vertices in the image is representative of a city that

must be visited. And the edges are representative of

the path that is taken between each city or node. Even

in this simple iteration it may be seen some simple

ways that distance could be improved, and each city

could still be reached. It is important to note in the

traveling salesman problem each of the nodes are fully

connected, meaning that each node is connected to

every other node in the graph. This means that

traversal between any two nodes within the graph is

possible. However, this requirement of the graph to

connect with every node allows for the various large

crosses of the graph appear where large distances are

traveled to reach a singular point, like reaching point

#7, show potential improvements. As such this

contributes to the extreme difficulty to developer an

algorithm that is able to solve the travelling salesman

problem with a great deal of efficiency.

III. SETUP

 Before creating and solving any iterations of the
travelling salesman problem we must first build some

simple helper functions that will allow us to save

solutions, create graphs, save graphs, display graphs,
and read incoming graph files. These pieces will be

important basics that will be used by each of the

various functions.
 The first of these is the creation of graphs.

Depending on the outlook of the problem there are

two ways to look at the different graphs that are

created. The first is considering each edge of the graph
as a ‘cost’ and not necessarily a distance. The best

way to describe this is the distance between Phoenix

and Los Angels is static, but the time versus cost of
each way to travel between the two differs. Consider

three different methods first being driving which may

take 7 or so hours, the second being taking a train
which may take 8-9 and the third being a flight

between the two cities which may take 3 hours. Now

each of these solutions involves a different ‘cost’ as

the time cost is different on each as well as the
material cost. A plane ticket may be much more

expensive then renting a car and driving which may be

more expensive than taking an Amtrak train between
the two. As such this cost per time should be

considered in our graph. As such each edge is not

representative of a distance between two points but a
cost to travel between them. This is the original

methodology that will be followed when creating

graphical representations of the cities.

 The next thought process in terms of graph creation
is the opposite, illustrating only the distance between

the two cities and determing the distance potentially in

number of pixels or otherwise between the two points
and calcuating the eculidian distance between the two.

This may be more representative of a situation in

which traveling by a consistent means is necessary
with less adaptation to outside and various problems

that also exsist within the space of the travelling

salesman problem.

 For consideration of all created algorithms they will
work on either methodology of graph creation will

work accordingly. For my testing purposes I believe

creation of the more realistic graph with more
randomized weights to be better and will build with

that in mind.

 The first step is to create a graph is determing how

large the graph should be, problems of up to around
30,000 points should be solvable with our created

algorithms. Each point is connected to every other

point and has a weight determined by the cost to travel
between them. As the graph is generated a diagonal

matrix is formed showing the distance between each

point. This can be seen in the below figure numbered
Figure 2. While a square matrix is acceptable a

triangular matrix works the same as both the top and

bottom of the triangular matrix will be mirrored across

the diagonal. For the use cases in this project we will
be using the triangle matrix associated with the fully

connected graph, instead of the square matrix, this is

because the triangular matrix possess the same
information as the square matrix and can be easily

converted between the two. As such either is sufficient

for solving the travelling salesman problem the
triangular will be used.

 3

Figure 2. Textual representation of a fully connected

graph generated by the generate_graph function.

 As can be seen when calling the function
generate_and_write_graph function and passing in the

size a graph is generated and then written to a file. The

file naming convention follows
Size<distance_travelled>.graph . Where the

distance_travelled is the length of the path that was

taken in finding the solution. Now that we have the
ability to generate graphs of any size we can begin

creating our early methods of deriving solutions to the

travelling salesman problem.

 It is also important to understand how a solution is
formated for consistance across the board. Solution

files are names s[distance_traveled]_<user_ID>.sol .

As such my solutions would look something like
s4535_tconger1.sol . Where in this case 4535 is the

distance of the cycle or path that was found. Then the

contents of the file are the order the nodes appear in

followed by a space, appearing as in the figure seen
below.

Figure 3. The solution file showcasing node order and

file name

 It is important to see that each node is visisted one

time, with the exception of the first node and that is

shown at both the beginning and end of the file, as the

cycle must be completed. As can be seen this graph
was of size ten, with nodes that are numbered zero

through nine.

Finally it is necessary to have a function that will
verify these solutions we have created, verifying that

the solution is correct and the actual distance of the

path matches the reported distance of the path. The
implementation of this function can be seen in the

figure below.

Figure 4. Function for verifying solve files that the
reported distance is the actual distance travelled.

This function works to verify that the solution is

correct, by taking the reported distance in the file name
and retracing the distance travelled to verify that the

distance travelled is the same as the reported distance.

Within this setup step it is also required to have
functions to read the graph and save it to a variable, the

code of which can be seen in the figure below.

Figure 5. Function for reading the graph from a file and

returning the graph.

 As can be seen this function quickly reads the file and

creates the two-dimensional array that is used to define a

 4

graph. This is especially useful for pre-generated graphs
such as the ones that will be provided within scope of

the competition. We will also need some other helper

functions including an aforementioned generate_graph

function to create graphs, and a function to write these
generated graphs to file, which can be seen in the figure

below.

Figure 6. Function generating graph and saving a

graph to a file

 As can be seen these functions are necessary to

support all necessary functionality and are widely used

throughout the rest of the TSP implementation, and will
be necessary for ability to compete within the class

competition. It is important to understand the guidelines

to this project as well as the associated competition
guidelines.

IV. COMPETITION GUIDELINES

Before outlining the various algorithms that will be

implemented it is important to understand the
limitations and expectations of the competition

portion. For the competition we are expected to create

a heuristic algorithm to solve the TSP. The goal of this

heuristic will be to find the shortest path that satisfies
the requirements of the TSP on a few various graph

sizes. This will have to be done within the allotted

time frame of the class period, which is 50 minutes, as
such having an algorithm that is concise enough to run

within a short time frame will be requisite. It’s

expected that some of the class period will be used for

setup and submission, so the algorithm should be able
to complete all of the graphs within a time frame of

about 30-minutes.

The heuristic should be able to solve 5 different
graph sizes. One of size 250, 1,000, 5,000, 15,000, and

30,000. As each of these graph sizes will need to be

solved it is both important to find a faster path as well
as being able to complete each graph size in the

allotted time. As such the algorithms that are used

should focus on both the size of the graph and the

speed at which computation is possible.
For this competition I plan on using Python as my

selected language, while this is a “slower” language

than other languages like C or Assembly. I believe
that using it in this situation will be sufficient,

especially considering the code will already be

running on my slower laptop as such competing with
faster devices will be difficult even in a more suited

language like C. Also, I am much more familiar with

Python as a language along with the libraries and

resources available in Python allowing these to be
used in solving the problem as well. Overall, for this

task Python is a fair choice of language for

implementation of the three separate solutions along
with each of the various helper functions that are

necessary.

V. BRUTE FORCE SOLUTION

The first solution created is a brute force solution.

This means that this attempt will find all possible

solutions to the problem and then save the shortest path.
While this sounds like the best way to solve this

problem, as the problem expands so quickly this method

begins to take longer and longer until eventually taking
longer than we would be able to run the program

feasibly and thus becomes a poor at reaching the

solution.

For this solution we first generate every permutation
of the nodes order and calculate the distance of that path,

and as we do that, we are able to find the smallest

solution. Because we are trying so many solutions it

 5

takes a great deal of time to complete calculations. This
can be seen in attached figure below.

Figure 7. Depicting run times for brute force method on

graphs of size 10 and then a graph of size 11.

As can clearly be seen, the first graph takes 16

seconds to complete while the second one takes over 200

seconds, just from adding one additional node. As more
and more nodes are added the time to completely brute

force the graph increases exponentially. While on

smaller graphs this may be a valid solution it quickly

becomes too difficult and is no longer a viable way of
solving the problem. Looking at the code of the brute

force solution we can see that all possible permutations

of the list are created, creating a very large number of
possible paths that need to be traced. Then each of these

potential permutations are iterated through, with the

distance calculated on each individual path.

Figure 8. The code for the brute force algorithm
implemented in Python

This results in a O(N2) runtime due to the loop and

the runtime of calculate_total_distance being O(N).
As this algorithm takes a long time to run it is important

that we look to other more heuristic methods of solving
the problem. Even while this code could have potential

optimization points, like stopping the calculation once

we realize that it will not be the smallest or by saving the
totals of certain branches or sections of the tree, this

solution will still continue to struggle especially as graph

sizes grow quickly. Because of this continued
exponential growth using a more heuristic approach is

necessary, even if this approach may give us a non-

perfect answer.

VI. NEAREST NEIGHBOR METHOD

 The Nearest Neighbor algorithm is an algorithm that

was developed to reach a solution to the TSP. The

process by which the nearest neighbor algorithm works

is by starting at a random node, and traveling the closest

unvisited node until every node has been visited. It can

be summarized in these steps.

 First, chose a node randomly, and mark all other nodes

as unvisited. Find the nearest node to this node that has

not been visited. Travel to the newly selected node. After

traveling to the new node, mark it as visited. Then repeat

these steps until every single node as been marked as

visited and no nodes remain as unvisited. This

algorithmic approach to solving the problem can be seen

in the figure below where the associated code is

displayed. A helper function was also created that is

used to return as well as give a start position, this will be

useful later when the heuristic method is created.

 6

Figure 9. The code implementation of the nearest

neighbor algorithm.

 As can be seen, the nearest neighbor algorithm works

in O(N2) time allowing a heuristic solution to the

problem very quickly. However, it may struggle to find a

perfect solution. Consider a situation in which all nearby

nodes have already been visited and the only node left to

visit is across the graph, while this may not be the most

optimal path it is the one that nearest neighbor would

take causing a large edge of the graph to be added where

taking that node earlier would in fact have been more

optimal. This methodology to finding a shortest path is

better than the simple brute force methodology as that it

works much quicker which is important for larger graphs

or less computational power, but it may not find the

actual shortest path between the nodes. The starting node

is also extremely important in the nearest neighbor

method, as changing the starting node also would change

what nodes are nearest, changing the entire potential

path of the algorithm.

 As this implementation of the nearest neighbor does

run very fast by comparison to the brute force, especially

on large graph sizes, it does not always provide the

absolute best solutions. Due to the potential to take paths

that are not optimal, such as taking a final edge across

the entirety of the graph. Because of this nearest

neighbor can produce good results but will produce

different results based on the starting node chosen, as the

path selected will be different. Due to this the creation of

a new heuristic method is necessary in solving the

problem both quickly and deriving and finding an

optimal path.

VII. SELF-CREATED HEURISTIC

For creating our own heuristic to solve the TSP, first it

is important to consider a few potential directions that

could be taken to improve on solving the problem.
One initial thought I had at a potential algorithm was

to divide the graph up into sections, each section would

be solved using a nearest neighbor method and then
stitched together to form the entire cycle. This way a

singular nearest neighbor would not branch the entire

length of the graph taking large, disadvantaged paths and

instead the largest taken path would be in a singular
section. This methodology would be quick but would

involve finding the relative location of each group of

points to divide them up which may be difficult and
intensive to memory usage.

Another potential solution would be to use a genetic

approach. At first creating a graph with a method like
nearest neighbor, then mutating links selecting the best

and continuing to mutate until better links have been

selected. While this may be a very good way to find an

approximate solution it may take a great deal of fine
tuning which could be difficult in a competition setting

where there is limited time to run the algorithm multiple

times tuning parameters each time.
My thought was similar to the first approach of

subdividing the graph and running nearest neighbor, but

I quickly discovered I could reach gradually better
solutions by running nearest neighbor from different

nodes actually continued to yield better solutions. Then

if I took a node two hops away from this initial node, I

was able to find strong solutions very quickly by running
the algorithm again from these nodes. Because of this

speed my initial thought is to run an extremely quick

algorithm like nearest neighbor many times in an effort
find these ‘good’ starting nodes and use those to find

shortest path. I think this would be a good method as it

should be expandable to any size that the nearest

 7

neighbor is able to handle, allowing for handling of
extremely large graphs very quickly, where some other

types of algorithms would begin to slow at these larger

graph sizes.

To quickly run each of these nearest neighbor
algorithms in tandem, using threads seemed like a good

solution. This would allow for me to utilize all of my

computing power even on a smaller machine like my
laptop.

 The first step is to run the nearest neighbor algorithm

starting at a large variety of randomly selected threads
this can be seen in the figure below.

Figure 10. First half of the implementation of the

heuristic approach using nearest neighbor algorithm with

many threads at a time

As can be seen, the simple idea of spawning a large

number of threads and running the nearest neighbor

algorithm starting at each of these individual nodes
allows for the first half of the code to be run very

quickly. The initial starting nodes are chosen randomly

to distribute them evenly throughout the graph and will
later be refined upon. The number of threads that are

used can be modified very easily depending on the size

of the problem. I found that on my device using a larger

number of threads on smaller problems yielded quick
results with a good reduction over time in the length of

the path found. In larger graph sizes the number of

threads may need to be reduced depending on the
computing resources available. The ability to run these

threads in parallel allows for a large number of attempts

to be run in tandem, which helps to yield quick and

precise results. As can be seen the target of these threads

is the thread_helper function which can be seen in the
figure below, this function is simply used as a wrapper

function to the nearest neighbor function as discussed

previously.

Fig 11. Thread_helper function which is just used to call
the nearest neighbor function and return the results by

appending to the list

 This function is necessary because the threading in
Python needs a function to be targeted by the thread, as

such this function just takes in the chosen place to start

the nearest neighbor algorithm, the graph (to be passed
to nearest neighbor function) and the results, to be added

to with the information of the path found in this

iteration. Using this targeted function allows for the

calling of nearest neighbor function within each thread,
starting from each individual start position, saving the

aggregated results appropriately.

 Once all the threads are created, they are added to an
array of threads and then run. Then we join together all

the threads together. This thread.join() allows for all the

threads to run individually and then the results are saved.

All the threads are run and joined together when the final
thread is complete, so it may take extra time depending

on the slowest thread used. Once all the threads have

been run individually, the best result of these threads is
taken. After gathering all the results, we find the best

start node by getting the minimum distance travelled in

the results array. This way we find the best node to start
the next iteration of the process at. This can be seen in

the continued snippet of the heuristic_approach function

code in the block below. Once this new start node has

been selected, all the nearest nodes to it are selected and
the nearest neighbor algorithm is recalculated starting at

each of these nearby nodes, in an effort to narrow down

the best starting position for nearest neighbor.
 This process is continually repeated with each of these

identified best nodes until eventually the code is unable

to find a better start position and thus cannot improve
any further, depending on the graph this may take only a

 8

few steps or many, but usually does not run up till the
limit, which is based on the number of threads that were

created.

Figure 12. Second half of the implementation of the

heuristic approach, where after finding the best start
position we start from nearby nodes in a refinement

effort

The above snippet of the code will run until near

exhaustion, running for at max the same as the number

of threads, but rarely actually reaching this maximal.

Instead it will run a few times to find nearby nodes that
are a better start location and attempt the same process at

each of these newly selected nodes. The first step is to

get the X closest nodes, where X is the number of
threads we are using overall, as we will be running the

algorithm again with the X threads. This selection of the

closest nodes can be seen in the figure below. Getting
the closest nodes is important as it allows us to find

other potentially good starting nodes, which may be

better, so finding these close nodes to the current good

starting position helps to refine the search for a potential
best starting node.

Figure 13. The get_closest_nodes function allowing

retrieval of the X closest nodes to be used within the

heurisitc approach algorithm.

 Once the closest nodes are retrieved, we can create
threads for each of these nodes and rerun the process on

the newly selected nodes, running the nearest neighbor

algorithm from each of these nodes. This is similar to
how it was done during the first section of the code

sample. Then after the threads we find the smallest path

that was found in the refinement step. If it is smaller than
the smallest_tuple the algorithm is rerun starting at this

newly selected node, again creating threads, and finding

the smallest cycle from these newly chosen best nodes.

This all in an effort to find the best starting node location
for the nearest neighbor algorithm and thus reducing the

cycle taking to solve the TSP. After the loop finishes

running the results are returned or are returned early if
we fail to find a smaller cycle. This information is

returned and saved in a file so that we are able to access

it for later review. Now we must conduct some analysis
on this methodology used to verify it actually yields

improved solutions in a decent amount of time. This

example runtime on a graph of size 5,000 is shown in the

image below. Obviously, it would be expected that
running the nearest neighbor algorithm many times

would be slower than just a singular run of the

algorithm. With each run of the refinement steps, we are
running the nearest neighbor algorithm many times,

equal to the number of threads, thus a slower run time is

to be expected. However, due to the speed at which

nearest neighbor algorithm runs it is expected to still be
faster than other potential algorithms. The big O analysis

of this function will yield an expected runtime of O(N4),

 9

due to the double loop, for iterating over each identified
start position, and N2 from the nearest neighbor

algorithm. This big O analysis can be seen in figure 15

below.

Figure 14. A run of the heuristic approach followed by a

run of a traditional nearest neighbor algorithm on the

same graph. Heuristic approach is run with X threads
being 40

Figure 15. Big O analysis of the heuristic approach

algorithm, comments and white space removed for

concisenss.

As can be seen in figure 14, only 5 iterations of the

refinement step were run, instead of the alloted 40 times
based on the number of threads. In the process

improving the total distance traveled by nearly 500, a

fairly large improvement on a graph size of 5,000. While
it did take a good bit of time longer to run the heuristic

algorithm it was able to yield a better result and

narrowed in on the best answer overtime, showing

improvement each iteration. While running this solution
does take a great deal of time more, where regular

nearest neighbor algorithm took only 1.84 seconds to run

the heuristic took nearly 6 and a half minutes. This

runtime is entirely depending on the number of threads
chosen. In this example, 40 threads were chosen, which

means that throughout the process here the nearest

neighbor algorithm was run over 240 times. Because of

this high number of runs, it is understandable how long
it took. We can also see this shown in the big O analysis,

as O(N4) comparative to O(N2) of the nearest neighbor

algorithm. However, on larger graph selections, it may
be necessary to tune the number of threads created as

that will largely affect the runtime. So with a larger

graph like 10,000 it may be better to run with only 20 or
fewer threads which will still help to reach a strong

solution but reduce the time growth that will occur at

larger graph sizes.

Another potential improvement would be to not
measure the nearest neighbor for the same node more

than once. Adding already searched nodes to a list and

then skipping them within the solution would help to
reduce the time, as it would be expected that running

each iteration will yield different nodes, there may be

some overlap causing delay as the same information is
calculated multiple times. This improvement could be

done by adding each searched node to a list and if an

element from that is is to be searched skip over it. Even

still the utilization of many threads helps to complete the
tasks in parrallel and will change based on various

hardware specifications of the system the code is being

run on, so it is important for some tuning to take place to
properly balance finding the solution and managing the

time it takes to do so. This methodology of tuning the

number of threads, and thus the iterations that are used

will be necessary for the competition in larger graph
sizes.

VIII. DISCUSSIONS

After the completion of the competition, new insights

were gleaned into how other individuals’ algorithms

may work and compare to my own. Unfortunately, my
algorithms were not able to reach a more efficient

solution, but it is still important to understand what

potential improvements could be made at each step of

the process. One unforeseen issue I ran into was the
professor pre-filling the best scores with his own scores.

This was an unexpected turn, as it was stated that speed

would be an element and thus, I focused my algorithm
on running fast in an effort to get on the board first even

if it meant being passed later in the competition as a less

efficient but more precise algorithm completed running.
One piece I even developed is shown in the figure of the

function below, a function derived to run extremely

quickly but does provide less than desirable answers in

terms of shortest path.

 10

Figure 16. Algorithm created for speed that shuffles the

nodes and reports the distance between them

 As can be seen in this function, all that happens is the

list of nodes is shuffled and the distance calculated.

While it may seem like this is not a useful piece of code,
it is helpful in two ways. It will derive an answer on any

size graph extremely quickly, faster than nearly any

algorithm can run, allowing the user to get an instant
start ahead of those who just run their algorithms to

begin with and then begin running the heuristic approach

algorithm. Also, it is useful in giving an idea of what a
potential path size in the graph would be, and thus is a

good way to comapre ones own heuristic algorithm to, to

see what level of improvement has been achieved

between the two.
My initial plan was to run this random_cycle_distance

function to achieve a quick and easy distance for the

TSP, submit that answer before anyone had a chance to
finish their algorithm and then begin running my actual

heuristic algorithm, thus allowing me to get an early start

in the race, that would eventually be beaten by a slower

piece of code.
 While running my heuristic algorithm, I was able to

near the best answers, but not beat them. This was

especially more prominent at larger graph sizes where at
size 15,000 I was able to reach an answer of 560851,

which while rather large does compete with some better

answers. Also discussing with classmates sitting nearby
to me, I was able to achieve better solutions than they

were on some of the graphs. This information is

encouraging, as even if I was not able to beat the best

solutions that were found, I was able to still generate
relatively‘good’ solutions to the problem.

IX. CONCLUSION

Overall, I think my solution was relatively successful,

but there are still a multitude of improvements that could

be made to increase the speed and accuracy of the

program. I think first of all, making sure not to run the
nearest neighbor algorithm on the same point twice,

especially if we already know that it is larger than the

result would be an easily implemented way to drastically

lower time spent searching for solutions. Secondly as
previously mentioned, subdividing the graph into

smaller graphs, and solving each then reattaching them

would be a way to improve the pathfinding ability. This
may be a difficult task without knowing the true location

of points, such as knowing an X and Y value in a two-

dimensional plane. If this kind of information were
known, it would be very easy to split the graph into

sections. As it stands currently point 1 could be next to

point 100 making it difficult to subdivide based on

information about the points. Without this basic
information it would have to be computed which could

take away valuable compute time that could be used in

finding solutions. Another solution that was discussed in
class was picking starting points at randomly and slowly

adding on to those, as to add new points to the edge that

most effectively captures them. This way seemed to have
strong results while also having a relatively simple

approach to the problem.

 This competition approach was a very interesting way

to understand the problem, as it forced everyone to come
up with unique solutions and see what techniques

worked well and what techniques were less successful. I

believe my solutions placed me somewhere in the
middle of the class, as I was able to reach nearer to the

top solutions, but not surpass any of them individually. It

is worth noting that, working with limited hardware on

my laptop and the chosen language of Python may have
hindered some of the abilities of my algorithm to

compete. I do think the strategy I went in with had

potential for success. Overall, I am satisfied with both
my solution and my overall placement within the wider

class, I believe that in a second round I would be able to

further refine my algorithm. It is also worth discussing,
how seeing the time growth, especially that with larger

problems, shows just how difficult these problems are to

actually solve. It is impossible to verify that one solution

would be the maximal and ‘perfect’ solution, and just
that it is better or worse than another potential solution.

Understanding, the P vs NP problem is useful and an

important foundation in computer science.

