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I.  ABSTRACT 

Abstract—In this paper, I will be covering and 

diving into the travelling salesman problem both in 

understanding the purposes and use cases of the 

travelling salesman problem as it comes to real world 

uses as well as understanding the problem more 

completely. The travelling salesman problem is a 

classic problem that exists within the field of 

computer science. It has a large degree of relevance 

within the field of P vs NP problems (problems 

solvable in polynomial time versus nondeterministic 

polynomial time). Understanding the travelling 

salesman problem is important to understanding the 

field of P vs NP as well as variations of the NP 

problems. As the travelling salesman problem is 

considered unsolvable, a variety of algorithms will be 

implemented including a brute force algorithm that 

will attempt to check every possible solution, a 

commonly used approach in the nearest neighbor 

algorithm, and finally a new implementation 

approach that represents a heuristic approach to the 

problem with the goal of finding faster and more 

accurate solutions to the problem. The overall goal of 

this self-described heuristic algorithm is to compete 

within the class period in an attempt to discover the 

various positives and negatives of different 

approaches and techniques at solving the problem 

and finding solutions.   

II. INTRODUCTION 

First the introduction of the problem. This travelling 

salesman problem has become a very important 

question to researchers as it can be applied to many 

different sciences and areas of study. It originally was 

introduced by mathematicians in the 1800s. As can be 

seen this is a very old problem that has seen many 

iterations of attempts to solve and discover various 

techniques used within the way of solving the  

 
 

 

 

 

 

problem. In the classic explanation of the problem a 

salesman is given a list of various cities across the 

country that he must visit, the goal of this salesman is 

to visit each of these cities only one time and to return 

to his original starting city all while making sure to 

take the shortest route between them as to save as 

much time and money as possible.  

This problem is an extremely difficult problem to 

reach a true solution to because as each destination 

can be visited from any other point within the graph 

the number of potential routes is extremely high and 

grows extremely quickly as the number of cities or 

destinations grows. The large growth of this problem 

makes it extremely difficult to solve and confirm that 

the absolutely correct solution has been reached. 

Because we usually cannot compute every single 

possible path it is difficult to know if we have selected 

the ’correct’ path, even if we found a very efficient 

path a potentially more efficient one exists.  

This makes this problem be described as one that is 

NP-Hard. This means that this problem is difficult to 

find a complete solution to. The NP stands for 

nondeterministic polynomial time, meaning that it 

cannot be determined how long a solution would take 

to create. The hard means that it is equally as difficult 

as all other problems within the NP-Hard space, as 

such if an algorithm is found to solve the travelling 

salesman problem, then there would exist and 

algorithm to solve all other problems within the NP-

Hard space of problems. In the figure below we can 

see what a solution to the travelling salesman problem 

may look like. A scattering of nodes with edges drawn 

between them representing the path that was taken 

between each individual node.  
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Figure 1. A common graph showcasing the travelling 

salesman problem. 

 

As can be seen in the figure above. Each of the 

vertices in the image is representative of a city that 

must be visited. And the edges are representative of 

the path that is taken between each city or node. Even 

in this simple iteration it may be seen some simple 

ways that distance could be improved, and each city 

could still be reached. It is important to note in the 

traveling salesman problem each of the nodes are fully 

connected, meaning that each node is connected to 

every other node in the graph. This means that 

traversal between any two nodes within the graph is 

possible. However, this requirement of the graph to 

connect with every node allows for the various large 

crosses of the graph appear where large distances are 

traveled to reach a singular point, like reaching point 

#7, show potential improvements. As such this 

contributes to the extreme difficulty to developer an 

algorithm that is able to solve the travelling salesman 

problem with a great deal of efficiency.   

III. SETUP 

 Before creating and solving any iterations of the 
travelling salesman problem we must first build some 

simple helper functions that will allow us to save 

solutions, create graphs, save graphs, display graphs, 
and read incoming graph files. These pieces will be 

important basics that will be used by each of the 

various functions.   
 The first of these is the creation of graphs. 

Depending on the outlook of the problem there are 

two ways to look at the different graphs that are 

created. The first is considering each edge of the graph 
as a ‘cost’ and not necessarily a distance. The best 

way to describe this is the distance between Phoenix 

and Los Angels is static, but the time versus cost of 
each way to travel between the two differs. Consider 

three different methods first being driving which may 

take 7 or so hours, the second being taking a train 
which may take 8-9 and the third being a flight 

between the two cities which may take 3 hours. Now 

each of these solutions involves a different ‘cost’ as 

the time cost is different on each as well as the 
material cost. A plane ticket may be much more 

expensive then renting a car and driving which may be 

more expensive than taking an Amtrak train between 
the two. As such this cost per time should be 

considered in our graph. As such each edge is not 

representative of a distance between two points but a 
cost to travel between them. This is the original 

methodology that will be followed when creating 

graphical representations of the cities.  

 The next thought process in terms of graph creation 
is the opposite, illustrating only the distance between 

the two cities and determing the distance potentially in 

number of pixels or otherwise between the two points 
and calcuating the eculidian distance between the two. 

This may be more representative of a situation in 

which traveling by a consistent means is necessary 
with less adaptation to outside and various problems 

that also exsist within the space of the travelling 

salesman problem.  

 For consideration of all created algorithms they will 
work on either methodology of graph creation will 

work accordingly. For my testing purposes I believe 

creation of the more realistic graph with more 
randomized weights to be better and will build with 

that in mind.  

 The first step is to create a graph is determing how 

large the graph should be, problems of up to around 
30,000 points should be solvable with our created 

algorithms. Each point is connected to every other 

point and has a weight determined by the cost to travel 
between them. As the graph is generated a diagonal 

matrix is formed showing the distance between each 

point. This can be seen in the below figure numbered 
Figure 2. While a square matrix is acceptable a 

triangular matrix works the same as both the top and 

bottom of the triangular matrix will be mirrored across 

the diagonal. For the use cases in this project we will 
be using the triangle matrix associated with the fully 

connected graph, instead of the square matrix, this is 

because the triangular matrix possess the same 
information as the square matrix and can be easily 

converted between the two. As such either is sufficient 

for solving the travelling salesman problem the 
triangular will be used. 
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Figure 2. Textual representation of a fully connected 

graph generated by the generate_graph function.  

 

 As can be seen when calling the function 
generate_and_write_graph function and passing in the 

size a graph is generated and then written to a file. The 

file naming convention follows 
Size<distance_travelled>.graph . Where the 

distance_travelled is the length of the path that was 

taken in finding the solution. Now that we have the 
ability to generate graphs of any size we can begin 

creating our early methods of deriving solutions to the 

travelling salesman problem.   

 It is also important to understand how a solution is 
formated for consistance across the board. Solution 

files are names s[distance_traveled]_<user_ID>.sol . 

As such my solutions would look something like 
s4535_tconger1.sol . Where in this case 4535 is the 

distance of the cycle or path that was found. Then the 

contents of the file are the order the nodes appear in 

followed by a space, appearing as in the figure seen 
below. 

 

 
Figure 3. The solution file showcasing node order and 

file name 

 
 It is important to see that each node is visisted one 

time, with the exception of the first node and that is 

shown at both the beginning and end of the file, as the 

cycle must be completed. As can be seen this graph 
was of size ten, with nodes that are numbered zero 

through nine. 

Finally it is necessary to have a function that will 
verify these solutions we have created, verifying that 

the solution is correct and the actual distance of the 

path matches the reported distance of the path. The 
implementation of this function can be seen in the 

figure below.  

 

 
Figure 4. Function for verifying solve files that the 
reported distance is the actual distance travelled.  

 

This function works to verify that the solution is 

correct, by taking the reported distance in the file name 
and retracing the distance travelled to verify that the 

distance travelled is the same as the reported distance. 

Within this setup step it is also required to have 
functions to read the graph and save it to a variable, the 

code of which can be seen in the figure below.  

 

 
Figure 5. Function for reading the graph from a file and 

returning the graph. 

 
 As can be seen this function quickly reads the file and 

creates the two-dimensional array that is used to define a 
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graph. This is especially useful for pre-generated graphs 
such as the ones that will be provided within scope of 

the competition. We will also need some other helper 

functions including an aforementioned generate_graph 

function to create graphs, and a function to write these 
generated graphs to file, which can be seen in the figure 

below.  
 

 

 
Figure 6. Function generating graph and saving a 

graph to a file 

 
   As can be seen these functions are necessary to 

support all necessary functionality and are widely used 

throughout the rest of the TSP implementation, and will 
be necessary for ability to compete within the class 

competition. It is important to understand the guidelines 

to this project as well as the associated competition 
guidelines.  

IV. COMPETITION GUIDELINES 

Before outlining the various algorithms that will be 

implemented it is important to understand the 
limitations and expectations of the competition 

portion. For the competition we are expected to create 

a heuristic algorithm to solve the TSP. The goal of this 

heuristic will be to find the shortest path that satisfies 
the requirements of the TSP on a few various graph 

sizes. This will have to be done within the allotted 

time frame of the class period, which is 50 minutes, as 
such having an algorithm that is concise enough to run 

within a short time frame will be requisite. It’s 

expected that some of the class period will be used for 

setup and submission, so the algorithm should be able 
to complete all of the graphs within a time frame of 

about 30-minutes.  

The heuristic should be able to solve 5 different 
graph sizes. One of size 250, 1,000, 5,000, 15,000, and 

30,000. As each of these graph sizes will need to be 

solved it is both important to find a faster path as well 
as being able to complete each graph size in the 

allotted time. As such the algorithms that are used 

should focus on both the size of the graph and the 

speed at which computation is possible.  
For this competition I plan on using Python as my 

selected language, while this is a “slower” language 

than other languages like C or Assembly. I believe 
that using it in this situation will be sufficient, 

especially considering the code will already be 

running on my slower laptop as such competing with 
faster devices will be difficult even in a more suited 

language like C. Also, I am much more familiar with 

Python as a language along with the libraries and 

resources available in Python allowing these to be 
used in solving the problem as well. Overall, for this 

task Python is a fair choice of language for 

implementation of the three separate solutions along 
with each of the various helper functions that are 

necessary. 

V. BRUTE FORCE SOLUTION 

The first solution created is a brute force solution. 

This means that this attempt will find all possible 

solutions to the problem and then save the shortest path. 
While this sounds like the best way to solve this 

problem, as the problem expands so quickly this method 

begins to take longer and longer until eventually taking 
longer than we would be able to run the program 

feasibly and thus becomes a poor at reaching the 

solution.  

For this solution we first generate every permutation 
of the nodes order and calculate the distance of that path, 

and as we do that, we are able to find the smallest 

solution. Because we are trying so many solutions it 
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takes a great deal of time to complete calculations. This 
can be seen in attached figure below. 

 

 
Figure 7. Depicting run times for brute force method on 

graphs of size 10 and then a graph of size 11. 

 
As can clearly be seen, the first graph takes 16 

seconds to complete while the second one takes over 200 

seconds, just from adding one additional node. As more 
and more nodes are added the time to completely brute 

force the graph increases exponentially. While on 

smaller graphs this may be a valid solution it quickly 

becomes too difficult and is no longer a viable way of 
solving the problem. Looking at the code of the brute 

force solution we can see that all possible permutations 

of the list are created, creating a very large number of 
possible paths that need to be traced. Then each of these 

potential permutations are iterated through, with the 

distance calculated on each individual path.  
 

 

Figure 8. The code for the brute force algorithm 
implemented in Python 

 

This results in a O(N2) runtime due to the loop and 

the runtime of calculate_total_distance being O(N).  
As this algorithm takes a long time to run it is important 

that we look to other more heuristic methods of solving 
the problem. Even while this code could have potential 

optimization points, like stopping the calculation once 

we realize that it will not be the smallest or by saving the 
totals of certain branches or sections of the tree, this 

solution will still continue to struggle especially as graph 

sizes grow quickly. Because of this continued 
exponential growth using a more heuristic approach is 

necessary, even if this approach may give us a non-

perfect answer.  

VI. NEAREST NEIGHBOR METHOD 

  The Nearest Neighbor algorithm is an algorithm that 

was developed to reach a solution to the TSP. The 

process by which the nearest neighbor algorithm works 

is by starting at a random node, and traveling the closest 

unvisited node until every node has been visited. It can 

be summarized in these steps. 

 First, chose a node randomly, and mark all other nodes 

as unvisited. Find the nearest node to this node that has 

not been visited. Travel to the newly selected node. After 

traveling to the new node, mark it as visited. Then repeat 

these steps until every single node as been marked as 

visited and no nodes remain as unvisited. This 

algorithmic approach to solving the problem can be seen 

in the figure below where the associated code is 

displayed. A helper function was also created that is 

used to return as well as give a start position, this will be 

useful later when the heuristic method is created.  
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Figure 9. The code implementation of the nearest 

neighbor algorithm. 
 

 As can be seen, the nearest neighbor algorithm works 

in O(N2) time allowing a heuristic solution to the 

problem very quickly. However, it may struggle to find a 

perfect solution. Consider a situation in which all nearby 

nodes have already been visited and the only node left to 

visit is across the graph, while this may not be the most 

optimal path it is the one that nearest neighbor would 

take causing a large edge of the graph to be added where 

taking that node earlier would in fact have been more 

optimal. This methodology to finding a shortest path is 

better than the simple brute force methodology as that it 

works much quicker which is important for larger graphs 

or less computational power, but it may not find the 

actual shortest path between the nodes. The starting node 

is also extremely important in the nearest neighbor 

method, as changing the starting node also would change 

what nodes are nearest, changing the entire potential 

path of the algorithm.  

 As this implementation of the nearest neighbor does 

run very fast by comparison to the brute force, especially 

on large graph sizes, it does not always provide the 

absolute best solutions. Due to the potential to take paths 

that are not optimal, such as taking a final edge across 

the entirety of the graph. Because of this nearest 

neighbor can produce good results but will produce 

different results based on the starting node chosen, as the 

path selected will be different. Due to this the creation of 

a new heuristic method is necessary in solving the 

problem both quickly and deriving and finding an 

optimal path. 

VII. SELF-CREATED HEURISTIC 

For creating our own heuristic to solve the TSP, first it 

is important to consider a few potential directions that 

could be taken to improve on solving the problem.  
One initial thought I had at a potential algorithm was 

to divide the graph up into sections, each section would 

be solved using a nearest neighbor method and then 
stitched together to form the entire cycle.  This way a 

singular nearest neighbor would not branch the entire 

length of the graph taking large, disadvantaged paths and 

instead the largest taken path would be in a singular 
section. This methodology would be quick but would 

involve finding the relative location of each group of 

points to divide them up which may be difficult and 
intensive to memory usage.  

Another potential solution would be to use a genetic 

approach. At first creating a graph with a method like 
nearest neighbor, then mutating links selecting the best 

and continuing to mutate until better links have been 

selected. While this may be a very good way to find an 

approximate solution it may take a great deal of fine 
tuning which could be difficult in a competition setting 

where there is limited time to run the algorithm multiple 

times tuning parameters each time.  
My thought was similar to the first approach of 

subdividing the graph and running nearest neighbor, but 

I quickly discovered I could reach gradually better 
solutions by running nearest neighbor from different 

nodes actually continued to yield better solutions. Then 

if I took a node two hops away from this initial node, I 

was able to find strong solutions very quickly by running 
the algorithm again from these nodes. Because of this 

speed my initial thought is to run an extremely quick 

algorithm like nearest neighbor many times in an effort 
find these ‘good’ starting nodes and use those to find 

shortest path. I think this would be a good method as it 

should be expandable to any size that the nearest 
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neighbor is able to handle, allowing for handling of 
extremely large graphs very quickly, where some other 

types of algorithms would begin to slow at these larger 

graph sizes.  

To quickly run each of these nearest neighbor 
algorithms in tandem, using threads seemed like a good 

solution. This would allow for me to utilize all of my 

computing power even on a smaller machine like my 
laptop.  

 The first step is to run the nearest neighbor algorithm 

starting at a large variety of randomly selected threads 
this can be seen in the figure below. 

 

 
Figure 10. First half of the implementation of the 

heuristic approach using nearest neighbor algorithm with 

many threads at a time 

 
As can be seen, the simple idea of spawning a large 

number of threads and running the nearest neighbor 

algorithm starting at each of these individual nodes 
allows for the first half of the code to be run very 

quickly. The initial starting nodes are chosen randomly 

to distribute them evenly throughout the graph and will 
later be refined upon. The number of threads that are 

used can be modified very easily depending on the size 

of the problem. I found that on my device using a larger 

number of threads on smaller problems yielded quick 
results with a good reduction over time in the length of 

the path found. In larger graph sizes the number of 

threads may need to be reduced depending on the 
computing resources available. The ability to run these 

threads in parallel allows for a large number of attempts 

to be run in tandem, which helps to yield quick and 

precise results. As can be seen the target of these threads 

is the thread_helper function which can be seen in the 
figure below, this function is simply used as a wrapper 

function to the nearest neighbor function as discussed 

previously. 
 

 
Fig 11. Thread_helper function which is just used to call 
the nearest neighbor function and return the results by 

appending to the list 
 

 This function is necessary because the threading in 
Python needs a function to be targeted by the thread, as 

such this function just takes in the chosen place to start 

the nearest neighbor algorithm, the graph (to be passed 
to nearest neighbor function) and the results, to be added 

to with the information of the path found in this 

iteration. Using this targeted function allows for the 

calling of nearest neighbor function within each thread, 
starting from each individual start position, saving the 

aggregated results appropriately.  

 Once all the threads are created, they are added to an 
array of threads and then run. Then we join together all 

the threads together. This thread.join() allows for all the 

threads to run individually and then the results are saved. 

All the threads are run and joined together when the final 
thread is complete, so it may take extra time depending 

on the slowest thread used. Once all the threads have 

been run individually, the best result of these threads is 
taken. After gathering all the results, we find the best 

start node by getting the minimum distance travelled in 

the results array. This way we find the best node to start 
the next iteration of the process at. This can be seen in 

the continued snippet of the heuristic_approach function 

code in the block below. Once this new start node has 

been selected, all the nearest nodes to it are selected and 
the nearest neighbor algorithm is recalculated starting at 

each of these nearby nodes, in an effort to narrow down 

the best starting position for nearest neighbor.  
 This process is continually repeated with each of these 

identified best nodes until eventually the code is unable 

to find a better start position and thus cannot improve 
any further, depending on the graph this may take only a 
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few steps or many, but usually does not run up till the 
limit, which is based on the number of threads that were 

created.  

 

 
Figure 12. Second half of the implementation of the 

heuristic approach, where after finding the best start 
position we start from nearby nodes in a refinement 

effort 

 
The above snippet of the code will run until near 

exhaustion, running for at max the same as the number 

of threads, but rarely actually reaching this maximal. 

Instead it will run a few times to find nearby nodes that 
are a better start location and attempt the same process at 

each of these newly selected nodes. The first step is to 

get the X closest nodes, where X is the number of 
threads we are using overall, as we will be running the 

algorithm again with the X threads. This selection of the 

closest nodes can be seen in the figure below. Getting 
the closest nodes is important as it allows us to find 

other potentially good starting nodes, which may be 

better, so finding these close nodes to the current good 

starting position helps to refine the search for a potential 
best starting node.   

 
Figure 13. The get_closest_nodes function allowing 

retrieval of the X closest nodes to be used within the 

heurisitc approach algorithm. 
 

 Once the closest nodes are retrieved, we can create 
threads for each of these nodes and rerun the process on 

the newly selected nodes, running the nearest neighbor 

algorithm from each of these nodes. This is similar to 
how it was done during the first section of the code 

sample. Then after the threads we find the smallest path 

that was found in the refinement step. If it is smaller than 
the smallest_tuple the algorithm is rerun starting at this 

newly selected node, again creating threads, and finding 

the smallest cycle from these newly chosen best nodes. 

This all in an effort to find the best starting node location 
for the nearest neighbor algorithm and thus reducing the 

cycle taking to solve the TSP. After the loop finishes 

running the results are returned or are returned early if 
we fail to find a smaller cycle. This information is 

returned and saved in a file so that we are able to access 

it for later review. Now we must conduct some analysis 
on this methodology used to verify it actually yields 

improved solutions in a decent amount of time. This 

example runtime on a graph of size 5,000 is shown in the 

image below. Obviously, it would be expected that 
running the nearest neighbor algorithm many times 

would be slower than just a singular run of the 

algorithm. With each run of the refinement steps, we are 
running the nearest neighbor algorithm many times, 

equal to the number of threads, thus a slower run time is 

to be expected. However, due to the speed at which 

nearest neighbor algorithm runs it is expected to still be 
faster than other potential algorithms. The big O analysis 

of this function will yield an expected runtime of O(N4), 



 9 

due to the double loop, for iterating over each identified 
start position, and N2 from the nearest neighbor 

algorithm. This big O analysis can be seen in figure 15 

below. 

 

 
Figure 14. A run of the heuristic approach followed by a 

run of a traditional nearest neighbor algorithm on the 

same graph. Heuristic approach is run with X threads 
being 40 

 

 
Figure 15. Big O analysis of the heuristic approach 

algorithm, comments and white space removed for 

concisenss. 
 

As can be seen in figure 14, only 5 iterations of the 

refinement step were run, instead of the alloted 40 times 
based on the number of threads. In the process 

improving the total distance traveled by nearly 500, a 

fairly large improvement on a graph size of 5,000. While 
it did take a good bit of time longer to run the heuristic 

algorithm it was able to yield a better result and 

narrowed in on the best answer overtime, showing 

improvement each iteration. While running this solution 
does take a great deal of time more, where regular 

nearest neighbor algorithm took only 1.84 seconds to run 

the heuristic took nearly 6 and a half minutes. This 

runtime is entirely depending on the number of threads 
chosen. In this example, 40 threads were chosen, which 

means that throughout the process here the nearest 

neighbor algorithm was run over 240 times. Because of 

this high number of runs, it is understandable how long 
it took. We can also see this shown in the big O analysis, 

as O(N4) comparative to O(N2) of the nearest neighbor 

algorithm. However, on larger graph selections, it may 
be necessary to tune the number of threads created as 

that will largely affect the runtime. So with a larger 

graph like 10,000 it may be better to run with only 20 or 
fewer threads which will still help to reach a strong 

solution but reduce the time growth that will occur at 

larger graph sizes.  

Another potential improvement would be to not 
measure the nearest neighbor for the same node more 

than once. Adding already searched nodes to a  list and 

then skipping them within the solution would help to 
reduce the time, as it would be expected that running 

each iteration will yield different nodes, there may be 

some overlap causing delay as the same information is 
calculated multiple times. This improvement could be 

done by adding each searched node to a list and if an 

element from that is is to be searched skip over it. Even 

still the utilization of many threads helps to complete the 
tasks in parrallel and will change based on various 

hardware specifications of the system the code is being 

run on, so it is important for some tuning to take place to 
properly balance finding the solution and managing the 

time it takes to do so. This methodology of tuning the 

number of threads, and thus the iterations that are used 

will be necessary for the competition in larger graph 
sizes. 

VIII. DISCUSSIONS 

After the completion of the competition, new insights 

were gleaned into how other individuals’ algorithms 

may work and compare to my own. Unfortunately, my 
algorithms were not able to reach a more efficient 

solution, but it is still important to understand what 

potential improvements could be made at each step of 

the process. One unforeseen issue I ran into was the 
professor pre-filling the best scores with his own scores. 

This was an unexpected turn, as it was stated that speed 

would be an element and thus, I focused my algorithm 
on running fast in an effort to get on the board first even 

if it meant being passed later in the competition as a less 

efficient but more precise algorithm completed running. 
One piece I even developed is shown in the figure of the 

function below, a function derived to run extremely 

quickly but does provide less than desirable answers in 

terms of shortest path.  
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Figure 16. Algorithm created for speed that shuffles the 

nodes and reports the distance between them 
 

 As can be seen in this function, all that happens is the 

list of nodes is shuffled and the distance calculated. 

While it may seem like this is not a useful piece of code, 
it is helpful in two ways. It will derive an answer on any 

size graph extremely quickly, faster than nearly any 

algorithm can run, allowing the user to get an instant 
start ahead of those who just run their algorithms to 

begin with and then begin running the heuristic approach 

algorithm. Also, it is useful in giving an idea of what a 
potential path size in the graph would be, and thus is a 

good way to comapre ones own heuristic algorithm to, to 

see what level of improvement has been achieved 

between the two. 
My initial plan was to run this random_cycle_distance 

function to achieve a quick and easy distance for the 

TSP, submit that answer before anyone had a chance to 
finish their algorithm and then begin running my actual 

heuristic algorithm, thus allowing me to get an early start 

in the race, that would eventually be beaten by a slower 

piece of code.  
 While running my heuristic algorithm, I was able to 

near the best answers, but not beat them. This was 

especially more prominent at larger graph sizes where at 
size 15,000 I was able to reach an answer of 560851, 

which while rather large does compete with some better 

answers. Also discussing with classmates sitting nearby 
to me, I was able to achieve better solutions than they 

were on some of the graphs. This information is 

encouraging, as even if I was not able to beat the best 

solutions that were found, I was able to still generate 
relatively‘good’ solutions to the problem.  

IX. CONCLUSION 

Overall, I think my solution was relatively successful, 

but there are still a multitude of improvements that could 

be made to increase the speed and accuracy of the 

program. I think first of all, making sure not to run the 
nearest neighbor algorithm on the same point twice, 

especially if we already know that it is larger than the 

result would be an easily implemented way to drastically 

lower time spent searching for solutions. Secondly as 
previously mentioned, subdividing the graph into 

smaller graphs, and solving each then reattaching them 

would be a way to improve the pathfinding ability. This 
may be a difficult task without knowing the true location 

of points, such as knowing an X and Y value in a two-

dimensional plane. If this kind of information were 
known, it would be very easy to split the graph into 

sections. As it stands currently point 1 could be next to 

point 100 making it difficult to subdivide based on 

information about the points. Without this basic 
information it would have to be computed which could 

take away valuable compute time that could be used in 

finding solutions. Another solution that was discussed in 
class was picking starting points at randomly and slowly 

adding on to those, as to add new points to the edge that 

most effectively captures them. This way seemed to have 
strong results while also having a relatively simple 

approach to the problem.  

 This competition approach was a very interesting way 

to understand the problem, as it forced everyone to come 
up with unique solutions and see what techniques 

worked well and what techniques were less successful. I 

believe my solutions placed me somewhere in the 
middle of the class, as I was able to reach nearer to the 

top solutions, but not surpass any of them individually. It 

is worth noting that, working with limited hardware on 

my laptop and the chosen language of Python may have 
hindered some of the abilities of my algorithm to 

compete. I do think the strategy I went in with had 

potential for success. Overall, I am satisfied with both 
my solution and my overall placement within the wider 

class, I believe that in a second round I would be able to 

further refine my algorithm. It is also worth discussing, 
how seeing the time growth, especially that with larger 

problems, shows just how difficult these problems are to 

actually solve. It is impossible to verify that one solution 

would be the maximal and ‘perfect’ solution, and just 
that it is better or worse than another potential solution. 

Understanding, the P vs NP problem is useful and an 

important foundation in computer science.  


