

Benefits and Challenges of Integrating Open-Source

Software Into the Software Development Process

Tyler Conger

College of Engineering

The University of Alabama

Tuscaloosa, AL

tconger1@crimson.ua.edu

Abstract—The concept and market for Open-Source
Software (OSS) solutions has grown in enormity and become

widely adopted in many various sectors of the industry since

it’s early days. With a promise of cost-savings, increased

efficiency, and more flexibility OSS has become very popular

with developers and managers alike. As OSS has grown in
popularity it is important to understand at what key points it is

able to improve upon the software development lifecycle, as it

both allows a workflow to be increased tremendously but can

also pose some difficulties to unknowing individuals, without

proper implementation and awareness. This paper seeks to
identify some of those benefits and challenges that occur when

integrating OSS. This paper will first explore the potential

challenges or downsides of integrating OSS into your project.

Some of the predicted downsides include potential quality and

security issues, a limitation on perspectives involved in creation
of OSS, the fact little to no long-term support may exist, and

potential legal and licensing challenges that may occur on the

business end. However, while there are downsides, there are

also benefits to integrating OSS into your workflow which are
equally important to be knowledgeable and aware of. Some of

these benefits that will be discussed include the speed at which

innovation and development are able to take place, the

community support available to these OSS packages and

libraries, the general reliability of mass testing and use, and the
transparency offered through using OSS. Investigating the

potential upsides and downsides that come with using OSS in

large or small-scale software projects, understanding that with

every benefit there is a hidden deterrent or challenge that

exists within.

Keywords—Open-Source Software (OSS), Free and Open-

source Software (FOSS), Software Component, Software

development life cycle

I. INTRODUCTION

Open-Source Software (OSS) has become increasingly

widely used within the software development life cycle in a
multitude of sectors of the industry. Allowing for community

driven solutions to various problems, both small and large,

and allowing for code to be cross-checked and validated by
anyone helping to promote transparency within the

codebases. This ability to collaborate and work together has
brought forth a great wave of innovation, has helped to

reduce costs through the reuse of software, and has allowed
for increased flexibility and the ease to change between

different libraries, frameworks, and codebases. As this

methodology allows developers to just take each individual
component that is necessary for a project and use it by itself,

this style of component-based development has become
more commonplace. With the widespread use has also come

increased reliability as applications are rigorously tested and
verified, following best software development practices.

Allowing for the development of in-house components
working in tandem with open-source components. However,

OSS hasn’t been all good, with the upsides have come with

some increased downsides as well, and these are equally as
important to understand before integrating them into your

software development pipeline.

As OSS has continued to grow, it has lost some of its
initial charm, in some ways becoming more difficult and

overbearing than would be expected. As projects have grown
in complexity, new contributors have continually had

increasing difficulty with social barriers dissuading some
from contributing. Also, as projects have continued to grow,

so too have the security concerns. As these code bases may

not be entirely vetted or understood by an in-house resource,
there are linked security concerns that something malicious

may exist allowing for a great deal of potential damage to be
dealt. These security concerns and vulnerabilities take time

to understand and analyze causing an increased vulnerability
analysis time associated with using these open-source

libraries, with these security vulnerabilities come business

concerns.

Through the process of reviewing others literature and

drawing upon real world experiences and practices within the
industry, an understanding and analysis of the various

benefits and challenges of using these open-source software
libraries. It is important to understand and be aware of all

facets, including the ones that someone may not think of
immediately, such as some of the associated downsides such

as the aforementioned social disparities that exist within

OSS, including some individuals feeling overwhelmed and
unable to contribute. Understanding these complexities, both

positive and negative, will allow for a more full and
complete understanding of when and how to use open-source

software libraries and how to integrate them into the

development process.

II. ASSOCIATED CHALLENGES

While there is a plethora of upsides to integrating OSS

into your software development process, there are also plenty
of downsides associated with OSS. It is extremely important

to understand and be aware of these first and foremost when

considering integrating open-source software into your
development pipeline. This section will delve into just a few

of the potential associated downsides with using open-source
software including ideas like the potential quality and

security issues that can be associated with using OSS, the
potential inequities that a re inherently involved in the

creation of OSS, how long term and end of life support for
some libraries and packages can be more difficult with OSS,

and potential legal challenges that are associated with

licensing and using OSS within a larger software ecosystem.
All of these various challenges that are associated with

integrating OSS will be unpacked and understood at a greater
length. While these are only a few of the specific challenges

that are faced when using OSS, these are some of the most
prevalent and important to be aware of and understand when

in comes to integrating OSS.

A. Quality and Security

As it is open-source software’s nature to have a wide
variety of contributors and editors this can lead to quality and

security concerns. It is generally unknown, to the user of the
library, who these individuals’ making changes and edits to

the piece of OSS may be, and as such that raises several
security and quality concerns, if these potential changes

could be malicious. Even while most OSS has a generally

accepted release and screening process, it is still possible ,
especially on a smaller less established project, that

something malicious may occur or a damaging bug may be
introduced into the code, unknowingly. This can be

worrisome to a business or other who is using an OSS
project, especially if that OSS code is added to a project with

security or reliability constraints. Unless developers are

double checking the update logs and each individual change
that occurs it can be difficult to track the number of changes

that may be taking place between updates, as well as what
information or pieces of code actually are changing each

time. This is especially true in OSS projects that are lacking

in detailed thorough documentation.

One major issue is the lack of documentation associated
with these codebases. While some projects may have a great

deal of documentation, programmers who add to OSS

libraries typically spend time programming and not writing
documentation. Because of this, it can be difficult to

implement, understand, and interpret what separate
functionality does or may be used for [1]. This lack of

complete understanding may also introduce security
challenges where the software is used incorrectly within an

application. Documentation may be much less robust and

clear as compared to a closed-source software solution,
especially one developed internally. This can cause a great

deal of challenge when a system your piece of software relies
on is unclear or vague in its documentation, even if you have

access to the code, it can still be difficult to parse out and
understand what features may be useful to you and how

exactly they work. Th is quality of documentation is not the

only issue to consider, there is also a large quantity of
various OSS projects to wade through in order to find the

best one for your use case.

With each project having different needs and

requirements using varied OSS libraries may be necessary,
and with there being 1,000s of different options available it

can be difficult to know what OSS library is best in a certain
situation. Because each project or person may need or want

to have their own features there have been a large number of

different options created. As such it can be difficult to wade
through all of the various projects to find the actual quality

ones that are useful [1]. As is reported by GitHub over 30
million different open-source projects exist on within their

platform, even with the ability to sort, being paralyzed by the
sheer number of different choices is a very real issue. As

well as the included time cost spent understanding each one

and the expertise required to do so. As such understanding
the software and those who developed it can help to alleviate

concerns of security and quality that may exist when
choosing a library or project to use. These issues can be

better alleviated through community support, better

documentation, and easily readable and understandable code

bases.

Also in large applications, and various web-based
applications, like a modern day React website, it is common

to use a huge number of publicly available libraries for
various different functionality, with even publicly available

libraries having numerous dependencies. Oftentimes each of

these libraries will also call upon dependencies greatly
increasing the number of OSS libraries used. This large

number of interconnected libraries creates a huge number of
places that must be checked and verified against

vulnerabilities. As such tracking and following all libraries
and all potential vulnerabilities that may occur is extremely

important and can be difficult and costly to track for
organizations. While there are tools available to track

potential vulnerabilities, adding these tools to your project

can come at a monetary cost. Both the security and quality of
an open-source software library are closely linked, and as a

huge variety of them are used in a single project it can be
difficult to track the information about each individual

project that is used or imported within a project.

B. Inequity in OSS

While on a first glance it may seem that open-source

software should be completely fair and open to all, there is a

bit more nuance to be understood with this concept. There

are barriers to entry that deter and limit some individuals

from being able to sit at the table and add to open-source

software. Some individuals who want to add to OSS feel

overwhelmed or inexperienced when looking at the large

complex libraries and packages that exist and can be scared

off from participating in OSS based on this feeling. Not

knowing where to start or how to add to a project deters

many of these individuals from ever contributing to a

project. This only hurts everyone involved as it removes a

potential developer from working on OSS and also any new

ideas or perspectives, they may have brought with them to

help improve the software [6]. This prob lem is also

exasperated in regard to minorities such as women in

computing. Where women in open-source project

contributions represent a small number comparative to that

of their male counterparts. Women represent about 10% of

open-source software contributors, a small fraction

comparative to men [3]. This huge d iscrepancy showcases

one of the major issues, a majority of OSS comes from the

same group of people, limiting potential outside

perspectives. As a business or developer when deciding to

use an OSS project this limit ing perspective can showcase

how the OSS may be jaded towards one group or another

and not encompass everyone involved in using it.

As OSS grows it is important that the variety of people

involved grows too, in order to equally benefit each person

using that software. We see that this varied perspective has

grown helping to improve and move forward OSS. As a

varied number of perspectives and opinions will help to

improve and make all OSS better for each party involved

with it.

C. Longterm Support

With any volunteer style software, like open-source

software often is, there will be associated challenges.

Because each individual group or person only adds and

creates what they themselves need, or see a need for,
therefore it is not often times that a singular person supports

a piece of OSS indefinitely. Because long term support is not
always guaranteed, especially on smaller more specific

projects, there can be only a handful of developers pushing
out changes and updates, and when these developers must

move on the future of their OSS libraries can be unclear.

This causes these software solutions to have a potentially

shorter lifetime.

This can be an issue when using these libraries within
larger products as it may later down the line shift the duties

of updates and bug fixes. This type of issue can be
worrisome, and thus widely used and supported libraries see

more usage rather than more nuanced counterparts. It is also
worth noting that any custom modifications or changes must

be made by the company, and often times are not released as

OSS themselves [1]. This can exasperate the problem as even
if the necessary updates or fixes may have been made by

another company if it was never released as OSS, it is not
helpful to the broader software engineering community and

thus must be done again on a voluntary basis. Also, any of
these individual changes must be maintained and upkept,

which can create a prolonged cost for the business. Often

times these kinds of changes are prompted to fit a certain
software component within a broader business system, and

modifications are needed on the original open-source
software in order to make it work with desired functionality,

another penalty of a more component driven methodology
rather than building software as a single entity [1]. There is

also a general feeling of uncertainty regarding the future of

various software libraries.

Within OSS as libraries change and progress over time,

they may lose some amount of backwards compatibility
damaging features you may rely on causing potential issues

down the line. This potential for changes can cause worry
among some who feel the OSS may change. And these issues

down the line could create a great deal of headache adding
extra cost and manpower needed to address and fix any

potential issues that occur. Whereas with closed-source

software this is not nearly as much of an issue as all changes
are maintained internally and any damaging changes can be

made gracefully allowing everyone appropriate time to react
and make any necessary changes or fixes. While this practice

is generally accepted in OSS, it is still possib le that a change
is necessary that would remove some backwards

compatibility. While all of the external issues with OSS are

important to understand it is also important to understand the
valid business concerns that may be associated with the use

of OSS in various software projects.

D. Legal Challenges

Because OSS is public the various types of licensing
associated with the software can create some concerns and

issues among the business, and navigating and understanding
these licensing issues can cost time and money. While most

OSS libraries and projects use many of the same standard
licenses, the MIT and Apache 2.0 licenses [4]. It can still be

difficult to navigate the various licenses that do exist

especially when using the software for commercial
applications. This can cause confusion or potentially legal

trouble for failure to understand and navigate the licesing
process properly. These licesning issues become exasperated

when combining outside OSS with proprietary codebases,
mixing these two can cause more potential issues with

incompatible licensses. As such it is important organizations
are clear on what comes from where and give credit where it

is due in line with the associated licenes. As there are a wide
variety of liceneses it can be confusing and difficult to keep

track of the various meanings and requirements of each
license. We can see the some of the various liceneses along

with how widely used they are in figure 1 below. The figure

showcases how two license styles dominate most projects,
but even these two only represent about two-thirds of all

OSS projects. As such we can see that there exsists a large
variety of liceneses that must be contended with which can

cause confusion and various issues. Th is large variety of
licesnes is especially true on smaller OSS projects or ones

that require a better understanding to integrate into the

development process.

Figure 1. Most popular open source licenses used overall in 2021 according

to statista [4].

Another potential legal issue that may occur is that
related to intellectual property rights. If code in an open-

source package has been illegally used or obtained it may
create even more issues down the line as it is reused [1].

Even if the company avoids issue, if the package or library is

suddenly taken down or removed, any dependent
applications would have serious code breaking issues and

need to find alternatives very quickly, again bringing in to
question potential reliability issues associated with OSS.

This could cause a large amount of development efffort
needed to fix an issue like this creating additional cost

associated with using OSS.

E. Conclusion

The use of OSS is one that is becoming increasingly

more common with the advent of more and more

modularized applications that rely on a larger amount of

lib rary and package resources written and created by the

community. OSS has worked to change the way many

software applications are created and architected, becoming

more and more ingrained. Because of its widespread use,

and the ballooning number of OSS projects, it is important

to understand the potential associated negatives or

challenges that can come up when using OSS within your

own project. Navigating and understanding these potential

issues can represent a big p iece of how easy it is to integrate

pieces of OSS in your project. While only a few of the

potential drawbacks were covered here we can see the

results of a survey of companies on the drawbacks that exist

with the usage of OSS from Morgan and Finnegan.

Companies stated the following as drawbacks of OSS; lack

of support including compatibility issues, lack of ownership

and expertise, others having access to the source code, no

one organization to market OSS, higher investment for

training required, and difficult to find the right staff with

correct competencies [5]. These issues along with the

discussed all work to contribute to the hesitancy in that

businesses experience in adding OSS to their projects.

While these were drawbacks expressed by the business side

of things developers exprese drawbacks including poor

documentation, less functionality, lack of a development

roadmap, confusing builds, and lack of expertise in certain

fields [5]. All of these issues both on the business side and

on the development side contribute to potential downsides

associated with using OSS, and are only compounded as the

number of OSS libraries or packages increases with the

scale of a project.

Overall, while there are some downsides that are

associated with utilizing open-source software, there are

also upsides associated with it. Now that we have covered a

few of the potential challenges and understand some

potential areas for concern that are associated with OSS, we

will now cover some of the associated benefits to using

OSS.

III. ASSOCIATED BENEFITS

While there are downsides to using open-source

software, there are a huge number of benefits associated

with the integration of OSS, but with anything it is

important to be knowledgeable and understand both sides of

the process in order to make a fully informed decision. Now

we will cover some of the associated benefits that come with

using OSS. Just a few of the potential benefits include, the

reduced cost associated, the large communities behind these

lib raries and packages, the reliability of the software due to

mass testing, and the ability to fully and complete

understanding of the code base. All these features, and more

create a strong case for using OSS within a software project.

A. Innovation and Deployment Speed

First and foremost, using OSS can save time and money

when implemented properly into the development process.

The ability to take already existing code, and use it to solve

a problem, greatly reducing the amount of work required is

a huge factor in the use of OSS.

The ability to use and reuse outside lib raries and OSS

packages allows for quick and rapid deployment. Because a

developer does not have to spend a great deal of time spent

reinventing the wheel, they are more able to spend time

integrating d ifferent libraries and working on quality

solutions elsewhere in the project. As OSS in its nature has a

community spread across the globe with varied backgrounds

and histories, they are able to work together to solve

problems and find solutions; fixing bugs in such a way that

is done quickly and without issue. And beca use many

modern OSS projects have so many quality control gates,

following best software development practices, such as

allowing everyone to review new code as it is added, this

means that OSS is more agile and able to adapt to changing

needs of the community extremely rapidly and with ease.

The broad spectrum of OSS and the nature of it being

publicly available also help to foster innovating within the

sector, as anyone is able to see and understand code that is

publicly available.

Also, the OSS projects themselves help to foster

innovation within the industry, as it allows others to learn

from each other and other projects. The ability to see and

understand how certain libraries o r packages work. Because

OSS often follows the CICD model of continuous

integration continuous deployment there are constantly

changes and adjustments that being made to the software

that work to continually provide improvements overtime.

This means that OSS will only continue to improve and

expand, getting better with each iteration. The iterative

process of development for OSS with the community

providing new input means that new innovative features are

constantly being added and tweaked, allowing for improved

more useful software overtime. Th is can be a great benefit

when integrating OSS into your project as it allows for

improvements with age as the software is upkept and

continually worked on. Also, because OSS is open to the

public that means that new achievements and findings are

shared lifting all p rojects up. This allows for small

improvements to be continually made on projects in an

iterative manner. The ability to collaborate and work

together through problems brings a unique wide range of

opinions and experiences to the table, changing the way

problems are looked at and approached. The great deal of

experienced developers that work on OSS projects helps to

drive innovation and create and environment where best

software practices are followed and respected. These

innovative ways allow for increased quality overall and

updates and fixes are made quickly to meet the needs of the

community.

B. Community Support

The large communities that gather around OSS help to

contribute to one of the benefits of using it, community

support. As there are a number of individuals who develop a

strong expert knowledge on the libraries they work on, and

thus the community forums are often able to answer

questions that one may have when implementing OSS. This

community support network allows for more help on a

voluntary basis [7]. On many of these community message

boards as well, previously asked questions still ex ist

allowing for a newer user experiencing the same or a similar

problem to find solutions simply quick ly and easily by

searching previously asked questions. This style of message

board community interaction is very popular within the OSS

community.

Even if the community message boards or mailing list

does not immediately know the answer the ability to draw

upon a large knowledge pool is extremely helpful. One may

be able to ask a unique question to their situation and even if

it has not been done before, someone in the community may

be able to provide a new or unique idea and approach to the

problem. This allows the ability to draw upon a very large

knowledge base when working with implementing OSS into

your project. These communities can help individuals grow

and learn as they progress in using OSS and help more

experienced developers get answers to questions that may be

extremely nuanced and difficult.

The use of the OSS community can a lso help to drive

changes and improvements to the software. If a large

number of individuals are requesting specific features or

changes it may steer the direction of the developers into

implementing these changes and modifications. This

influence that is held by the community to make changes

helps to steer the development to the most useful features to

the most people. Similarly, if an unthought of idea is

requested this may be the catalyst for development on that

previously unrequested piece.

C. Reliability and Tester Base

Open-source software poses a feature that closed-source

software does not, it’s wide usage. Because OSS is widely

used any potential issues are discovered quickly and able to

be repaired. This helps to improve the overall reliability of

the software. The large number of developers using and

interacting with OSS on a daily basis are continually

expanding and pushing the boundaries through testing the

software. This rigorous testing is constantly identifying

issues and reporting them to the community [5]. Allowing

such a vast tester base is a way to continually provide

improved OSS over time as they are rigorously tested. This

testing by the community members helps to remove errors,

inefficiencies, and inconsistences that may exist within the

code base. These issues are able to be quickly rectified and

addressed by the community, again proving the reliability

and strength of the community around OSS. This peer

review is a large factor that allows OSS to be so successful,

even without large teams working on it, as would be the

case with close-source software, OSS is able to thrive

because of the intensive peer rev iew process and community

around each OSS project that exists. It is also worth noting

that as OSS projects do not exist in a singular place, they are

more resilient to experiencing downtime than would be

possible or expected with proprietary software run by a

singu lar organization or business. This resilience and ability

to be heavily scrutinized helps to lend strength and

reliability that exists within OSS. As we have discussed, the

public nature, or transparency, of OSS helps to lend to the

benefit of OSS in reliability.

D. Transparency

While using OSS does have security d isadvantages, the

ability for the community to cross-check and verify code

also helps to provide a greater level of security as well as

quickly find and squash any bugs that may exist. In widely

used libraries, security may be higher as a vast amount of

people are looking over the codebase and verifying it, as

well any bugs that are found are reported much more

quickly. Also, because such a large user community exists,

they are able to provide fixes and updates to these bugs

more quickly than a small team may be able to do so. This

helps to reduce the amount of time that a potential exposure

may have occurred, minimizing this time is key in

producing a safe and usable application with OSS. The fact

that OSS is open and free also helps to provide a level of

comfort regarding potential security vulnerabilities. Because

OSS is transparent, security researchers, developers, and

users are all able to read through and scrutinize the code

finding any potential issues quickly. The fact that OSS is

transparent helps to provide trust, as anyone is able to verify

the contents of what may or may not exist within the

codebase. This t ransparency also helps to understand what

practices are used and if best practices are being followed or

not. This level of scrutiny allows researchers to flag

potentially weak OSS so lutions that may need improvement.

Overall, the ability for a multitude of individuals to read,

understand, run, and test open-source projects allows for a

great deal of transparency that can lead to quickly solving

problems and squashing any bugs that may exist within the

software, helping to improve and provide a better result for

all individuals using it.

E. Conclusion

As we have seen, integrating OSS into your software

development process does have downsides, but it also has a

great deal of upsides involved which is why it has become

increasingly commonplace and widely adopted to do so. We

have discussed just a few of the potential benefits of using

OSS. When surveyed businesses expressed potential

benefits as; lower cost including licensing and bug fixing,

general flexibility with the licenses, escapes the feeling of

being tethered to a single vendor, increases collaboration

among teams, increased innovation through access to the

source code, increased business functionality by keeping

teams smaller and more agile, and community standards that

software is held to when ava ilable for public scrutiny [5].

Developers cited some similar benefits for using integrating

OSS in their development process including, more reliable

software, increased security due to source code availability,

performance improvements in capacity and speed, large

developer test base keeping OSS up-to-date, flexible use

allowing customization of software, compatibility with

various different systems, and harmonization allowing for

easily scalable features and practices [5].

All of these reasons showcase the various benefits

associated with integrating OSS into the development

pipeline. While there are drawbacks, the benefits are many

and lend credib ility to the continued development and usage

of OSS. It is important to understand both the benefits and

the drawbacks when assessing the potential use of an OSS

library or package.

IV. CONCLUSION

 While open-source software may at first glance be a

scary idea, publishing all your code and using code majorly

built by people all around the world that you have never met

or been able to certify, it is important to understand the

advantages that come with OSS, and how useful it can be to

integrate it into your software project. As the ability to

innovate and deploy at a rapid pace through usage of

previously created libraries and packages. The ability to get

real-time support for past and new issues through the

community in a forum or mail type setting can be a huge

advantage especially in getting advice from a more

experienced developer. The reliability of OSS, as it is

constantly being tested, updated, and fixed allows for st rong

software projects, also with decentralized servers downtime

is min imal on OSS projects. Finally , the transparency, the

ability to actually read understand and interpret the code that

you are dealing with allows for a new level of understanding

and tinkering that may not be present in a proprietary

software solution. As discussed, there are downsides to

these though, but overall OSS is a strong solution to

integrate within your own project and can help to move

projects forward quickly and efficiently.

 While this paper simply covered a review of past

literature and techniques, it is important to understand what

a future piece of research could look like. In the future an

analysis between two similar businesses, one that used OSS

and one that relies on close-source software would be

extremely interesting. This would be especially interest ing if

we could monitor the activities and success of these two

hypothetical businesses over time in a n effort to understand

what the potential upsides and downsides each faces as they

continue with development of a product.

 Overall, the use of OSS is a game changer in software

development and can help to improve workflow and

process. Integrating OSS into a project can have benefits

and potential challenges faced for the business side as well

as the development side.

V. REFERENCES

[1] K.-J. Stol and M. Ali Babar, "Challenges in Using Open

Source Software," Association for Computing

Machinery, p. 6, 2010.

[2] T. Vale, I. Crnkovic, E. S. d. Almeida, P. A. d. M. S.

Neto, Y. C. Cavalcanti and S. R. d. L. Meira, "Twenty-

eight years of component-based software engineering,"

ScienceDirect, pp. 128-148, 2016.

[3] B. TRINKENREICH, I. S. WIESE, A. SARMA, M. A.

GEROSA and I. STEINMACHER, "Women's

Participation in Open Source Software: A Survey of the

Literature," ACM Transactions on Software Engineering

and Methodology, p. 36, 2022.

[4] L. S. Vailshery, "Most popular open source licenses

worldwide in 2021," statista, 2024.

[5] L. Morgan and P. Finnegan, "Benefits and Drawbacks of

Open Source Software: An Exploratory Study of

Secondary Software Firms," IFIP International

Conference on Open Source Systems, vol. 234, pp. 307-

312, 2007.

[6] I. Steinmacher, M. Gerosa, T. U. Conte and D. F.

Redmiles, "Overcoming Social Barriers when

Contributing to Open," Computer Supported

Cooperative Work (CSCW), pp. 1-44, 2018.

[7] M. A. Khan and F. UrRehman, "Free and Open Source

Software: Evolution, Benefits and Characteristics,"

International Journal of Emerging Trends & Technology

in Computer Science (I JETTCS), vol. 1, no. 3, 2012.

